5 research outputs found

    Statistical detection of systematic election irregularities

    Get PDF
    Democratic societies are built around the principle of free and fair elections, that each citizen's vote should count equal. National elections can be regarded as large-scale social experiments, where people are grouped into usually large numbers of electoral districts and vote according to their preferences. The large number of samples implies certain statistical consequences for the polling results which can be used to identify election irregularities. Using a suitable data collapse, we find that vote distributions of elections with alleged fraud show a kurtosis of hundred times more than normal elections on certain levels of data aggregation. As an example we show that reported irregularities in recent Russian elections are indeed well explained by systematic ballot stuffing and develop a parametric model quantifying to which extent fraudulent mechanisms are present. We show that if specific statistical properties are present in an election, the results do not represent the will of the people. We formulate a parametric test detecting these statistical properties in election results. Remarkably, this technique produces similar outcomes irrespective of the data resolution and thus allows for cross-country comparisons.Comment: For data see also http://www.complex-systems.meduniwien.ac.at/elections/election.htm

    Parkinson's Law Quantified: Three Investigations on Bureaucratic Inefficiency

    Full text link
    We formulate three famous, descriptive essays of C.N. Parkinson on bureaucratic inefficiency in a quantifiable and dynamical socio-physical framework. In the first model we show how the use of recent opinion formation models for small groups can be used to understand Parkinson's observation that decision making bodies such as cabinets or boards become highly inefficient once their size exceeds a critical 'Coefficient of Inefficiency', typically around 20. A second observation of Parkinson - which is sometimes referred to as Parkinson's Law - is that the growth of bureaucratic or administrative bodies usually goes hand in hand with a drastic decrease of its overall efficiency. In our second model we view a bureaucratic body as a system of a flow of workers, which enter, become promoted to various internal levels within the system over time, and leave the system after having served for a certain time. Promotion usually is associated with an increase of subordinates. Within the proposed model it becomes possible to work out the phase diagram under which conditions bureaucratic growth can be confined. In our last model we assign individual efficiency curves to workers throughout their life in administration, and compute the optimum time to send them to old age pension, in order to ensure a maximum of efficiency within the body - in Parkinson's words we compute the 'Pension Point'.Comment: 15 pages, 5 figure

    Schumpeterian economic dynamics as a quantifiable minimum model of evolution

    Full text link
    We propose a simple quantitative model of Schumpeterian economic dynamics. New goods and services are endogenously produced through combinations of existing goods. As soon as new goods enter the market they may compete against already existing goods, in other words new products can have destructive effects on existing goods. As a result of this competition mechanism existing goods may be driven out from the market - often causing cascades of secondary defects (Schumpeterian gales of destruction). The model leads to a generic dynamics characterized by phases of relative economic stability followed by phases of massive restructuring of markets - which could be interpreted as Schumpeterian business `cycles'. Model timeseries of product diversity and productivity reproduce several stylized facts of economics timeseries on long timescales such as GDP or business failures, including non-Gaussian fat tailed distributions, volatility clustering etc. The model is phrased in an open, non-equilibrium setup which can be understood as a self organized critical system. Its diversity dynamics can be understood by the time-varying topology of the active production networks.Comment: 21 pages, 11 figure

    Opinion Formation in Laggard Societies

    Full text link
    We introduce a statistical physics model for opinion dynamics on random networks where agents adopt the opinion held by the majority of their direct neighbors only if the fraction of these neighbors exceeds a certain threshold, p_u. We find a transition from total final consensus to a mixed phase where opinions coexist amongst the agents. The relevant parameters are the relative sizes in the initial opinion distribution within the population and the connectivity of the underlying network. As the order parameter we define the asymptotic state of opinions. In the phase diagram we find regions of total consensus and a mixed phase. As the 'laggard parameter' p_u increases the regions of consensus shrink. In addition we introduce rewiring of the underlying network during the opinion formation process and discuss the resulting consequences in the phase diagram.Comment: 5 pages, eps fig

    Introduction to the Theory of Complex Systems

    No full text
    Complex systems are everywhere. Ecosystems, financial markets, traffic, the economy, the internet and social media are complex systems. This textbook summarises our understanding of complex systems and the methodological progress made over the past 20 years in a clear, structured, and comprehensive way
    corecore